不得不吐槽一下有时做题看答案时,答案总是列个公式就给结果了(公式我也会列啊,但我就是不会算啊🙄
比如今天做到的:
\int_0^{2\pi} {\sqrt{x^2+1}} \,{\rm d}x
通过换元(令x=tan(t))后可以转化为求:
\int {sec^3(t)} \,{\rm d}t
然后就不会搞了,查Wlofram时,Wolfram又给了一个公式(同样是没过程... (╯‵□′)╯︵┻━┻):
\int {sec^m(u)} \,{\rm d}u = \frac{sin(u)sec^{m-1}(u)}{m-1} + \frac{m-2}{m-1} \int {sec^{m-2}(u)} \,{\rm d}u
把m=3代一下就出结果了,但是问题好像是变复杂了,因为他没给推导过程(也可能只是因为wtcl - -)。所以这里就水个贴写一下这个过程。
首先看Wolfram给的公式的结构大概看出了是用分布积分法的,然后推的时候其实还用到了积分再现,和一个神奇的公式:
tan^2x = sec^2x-1
首先从比较简单的sec^3(x)开始说,用分部积分的话首先要拆成两部分,因为是3次方,可能性比较大的两种可能就是sec(x)和sec^2(x)了。然后sec(x)用来求导,sec^2(x)用来积分(用的是张宇的表格法,但是\LaTeX画表格比较麻烦,而我又比较懒)
首先:
\begin{aligned}
(sec(x))' &= sec(x)tan(x) \\
\int {sec^2(x)} \,{\rm d}x &= tan(x) \\
\int {sec(x)} \,{\rm d}x &= ln|sec(x)+tan(x)|
\end{aligned}
于是:
\begin{aligned}
\int {sec^3(t)} \,{\rm d}t &= sec(t)tan(t) - \int {sec(t)*tan^2(t)} \,{\rm d}t \\
&= sec(t)tan(t) - \int {sec(t)*(sec^2(t)-1)} \,{\rm d}t \\
&= sec(t)tan(t) - \int {(sec^3(t)-sec(t))} \,{\rm d}t \\
&= sec(t)tan(t) - \int {(sec^3(t))} \,{\rm d}t+\int {(sec(t)*)} \,{\rm d}t \\
&= sec(t)tan(t) + ln|sec(x)+tan(x)| - \int {(sec^3(t))} \,{\rm d}t \\
\end{aligned}
中间用到了哪个神奇的公式,然后积分再现也出来了,把- \int {(sec^3(t))} \,{\rm d}t移到左边,就有:
\begin{aligned}
2\int {sec^3(t)} \,{\rm d}t &= sec(t)tan(t) + ln|sec(x)+tan(x)| \\
\int {sec^3(t)} \,{\rm d}t &= \frac{sec(t)tan(t) + ln|sec(x)+tan(x)| }{2} + C
\end{aligned}
然后求sec^m(x)也是用类似的方法,拆成sec^{m-2}(x)和sec^2(x),sec^{m-2}(x)做求导,sec^2(x)做积分
\begin{aligned}
&(sec(x))' = (m-2)sec^{m-3}(x)*sec(x)tan(x) = (m-2)sec^{m-2}(x)tan(x) \\
&\int {sec^2(x)} \,{\rm d}x = tan(x)
\end{aligned}
分部积分:
\begin{aligned}
\int {sec^m(t)} \,{\rm d}t &= sec^{m-2}tan(x) - (m-2)\int {sec^{m-2}(t)tan^2(t)} \,{\rm d}t \\
&= sec^{m-2}tan(x) - (m-2)\int {sec^{m-2}(t)(sec^2(t)-1)} \,{\rm d}t \\
&= sec^{m-2}tan(x) - (m-2)\int {sec^m(t)-sec^{m-2}(t)} \,{\rm d}t \\
&= sec^{m-2}tan(x) + (m-2)\int {sec^{m-2}(t)} \,{\rm d}t - (m-2)\int {sec^m(t)} \,{\rm d}t
\end{aligned}
积分再现:
\begin{aligned}
\int {sec^m(t)} \,{\rm d}t &= sec^{m-2}tan(x) + (m-2)\int {sec^{m-2}(t)} \,{\rm d}t - (m-2)\int {sec^m(t)} \,{\rm d}t \\
(m-1)\int {sec^m(t)} \,{\rm d}t &= sec^{m-2}tan(x) + (m-2)\int {sec^{m-2}(t)} \,{\rm d}t \\
\int {sec^m(t)} \,{\rm d}t &= \frac{sec^{m-2}tan(x) + (m-2)\int {sec^{m-2}(t)} \,{\rm d}t}{m-1} +C
\end{aligned}